CS221: Logic Design

Instructors:
Dr. Ahmed Shalaby http:/bu.edu.eq/staffiahmedshalabyy 14\#
Dr. Fatma Sakr

Digital Fundamentals

CHAPTER Shift Registers

Shift Registers

Basic Shift Register Operations

A shift register is an arrangement of flip-flops with important applications in storage and movement of data. Some basic data movements are illustrated here.

Shift Registers

Serial-in/Serial out Shift Register

Data in $\rightarrow \rightarrow \rightarrow$ Data out
Shift registers are available in IC form or can be constructed from discrete flip-flops as is shown here with a five-bit serial-in serial-out register.
Each clock pulse will move an input bit to the next flip-flop. For example, a 1 is shown as it moves across.

Shift Registers

Serial-in/Serial out Shift Register

Shift Registers

Serial in/Parallel out Shift Register

An application of shift registers is conversion of serial data to parallel form.

Shift Registers

Serial in/Parallel out Shift Register

Shift Registers

Data in

Parallel in/Serial out Shift Register

An application of shift registers is conversion of parallel data to serial form.

Shift Registers

Parallel in/Serial out Shift Register

Shift Registers

Parallel in/Parallel out Shift Register

Shift Registers

Bidirectional Shift Register

Bidirectional shift registers can shift the data in either direction using a RIGHT $\overline{L E F T}$ input.

Shift Registers

Universal Shift Register

A universal shift register has both serial and parallel input and output capability.
The 74 HC 194 is an example of a 4-bit bidirectional universal shift register.

Shift Registers

Shift Register Applications

Shift registers can be used to delay a digital signal by a predetermined amount.

An 8-bit serial in/serial out shift register has a 40 MHz clock. What is the total delay through the register?
 is $1 / 40 \mathrm{MHz}=25 \mathrm{~ns}$

The total delay is $8 \times 25 \mathrm{~ns}=200 \mathrm{~ns}$

Shift Registers

Shift Register Applications

A UART (Universal Asynchronous Receiver Transmitter) is a serial-toparallel converter and a parallel to serial converter.

UARTs are commonly used in small systems where one device must communicate with another. Parallel data is converted to asynchronous serial form and transmitted. The serial data format is:

Shift Registers

Shift Register Counters

Inputs		Outputs		
D	CLK	Q	\bar{Q}	Comments
1	\uparrow	1	0	SET
0	\uparrow	0	1	RESET

Shift registers can form useful counters by recirculating a pattern of 0's and 1's. Two important shift register counters are the Johnson counter and the ring counter.

The Johnson counter is useful when you need a sequence that changes by only one bit at a time but it has a limited number of states ($2 n$, where $n=$ number of stages).

The Johnson counter can be made with a series of D flip-flops

CLK	Q_{0}	Q_{1}	Q_{2}	Q_{3}
0	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1

Shift Registers

Inputs			Outputs		
J	K	$C L K$	Q	\bar{Q}	Comments
0	0	\uparrow	Q_{0}	\bar{Q}_{0}	No change
0	1	\uparrow	0	1	RESET
1	0	\uparrow	1	0	SET
1	1	\uparrow	\bar{Q}_{0}	Q_{0}	Toggle

CLK	Q_{0}	Q_{1}	Q_{2}	Q_{3}
0	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1

Shift Registers

Ring Counter

The ring counter can also be implemented with either D flip-flops or J-K flip-flops.

Here is a 4-bit ring counter constructed from a series of D flip-flops. Notice the feedback.

Like the Johnson counter, it can also be implemented with J-K flip flops.

Shift Registers

Ring Counter

Redrawing the Ring counter (without the clock shown) shows why it is a "ring".

The disadvantage to this counter is that it must be preloaded with the desired pattern (usually a single 0 or 1) and it has states number (n, where $n=$ number of flip-flops.

On the other hand, it has the advantage of being self-decoding with a unique output for each state.

Shift Registers

Ring Counter

A common pattern for a ring counter is to load it with a single 1 or a single 0 . The waveforms shown here are for an 8 -bit ring counter with a single 1 .

Shift Registers

Basic Shift Register Operations

A shift register is an arrangement of flip-flops with important applications in storage and movement of data. Some basic data movements are illustrated here.

Application: Traffic Light Controller

Application: Traffic Light Controller

Traffic signal controller logic

